Out of a plane or two coplanar vectors we can extract three not identical points in 3D. Not all points may be in the same straight line. Let's call this three points
P1 = (x1/y1/z1)
P2 = (x2/y2/z2)
P3 = (x3/y3/z3)

with P1 ≠ P2 ≠ P3
We are looking for a perpendicular vector to the plane, which these ponits define:
V = (xv/yv/zv)


The cartesian product of two vectors produce the coordinates of their perpendicular vektor.

|P1-P2| x |P2-P3| = V


! Vektor 1: A = (ax,ay,az)

ax = x1-x2
ay = y1-y2
az = z1-z2

! Vektor 2
: B = (bx,by,bz)
bx = x2-x3
by = y2-y3
bz = z2-z3

! Solution 1
perpendicular Vektor to A and B:
! v = (vx,vy,vz)

vx = by*az - bz*ay
vy = bz*ax - bx*az
vz = bx*ay - by*ax

! Solution 2
! perpendicular Vektor
to A and B:
! V = (vx,vy,vz)

vx = ay*bz - az*by
vy = az*bx - ax*bz
vz = ax*by - ay*bx

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir nur essenzielle Cookies.
Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung